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Abstract

We study the stress field around an oblique closed defect in polymethylmethacrylate (PMMA) plates under uniaxial
compression in the presence of friction. Every specimen (PMMA plate) with a slot may be compared to an infinite plate
with an elliptical cavity where the long axis is equal to the slot length. We have calculated the stress tensor for an
elliptical oblique closed slot using the system of curvilinear co-ordinates defined by two families of ellipses and homo-
focal hyperbolas and we have plotted the isovalues and the stress trajectories in terms of the friction intensity.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An increasing number of geological observations have shown that some kinds of fault on different scales
originate from shearing movements along pre-existing joints. Branch cracks have been observed in various
materials such as polymers (Bowden, 1970; Poirier, 1980; Brun and Cobbold, 1980), plaster (Lajtai, 1971)
and glass (Bombolakis, 1964, 1968). The branch crack also occurs in rocks such as granite (Ashby and
Sammis, 1988) and at the tip of geological faults.

The aim of this paper is to study the stress field linked to the defect, in a polymethylmethacrylate
(PMMA) plate with a slot, whose axis makes an angle f ranging from 15° to 75° with the direction of
imposed uniaxial compressive stress. Very thin plates of different materials were inserted within the slot to
ensure a known friction coefficient and in order to have an oblique closed slot (Chaker and Barquins, 1996;
Barquins et al., 1997). Under uniaxial compression, the relative displacement of initial surface defect
corresponds to mode II.

2. Mathematical problem

To study the mathematical models, the PMMA plate may be compared to an infinite plate with an
elliptical cavity where the long axis is equal to the slot length (Inglis, 1913; Westergaard, 1939; Irwin, 1957,
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Fig. 1. State of stress near an elliptical crack tip in curvilinear co-ordinates.

Sneddon, 1964). The stress tensor for an elliptical oblique closed slot can be calculated using the system of
curvilinear co-ordinates defined by two families of ellipses and homofocal hyperbolas (Fig. 1). For an open
slot, the stress tensor was found by Wu and Chang (1978). A very powerful method for solving plane
problems was developed first by Stevenson (1945), over by Muskhelishvili (1953), after by Timoshenko and
Goodier (1961) and Jeager and Cook (1979).

3. Stress tensor
In order to calculate the stress tensor for an elliptical oblique closed slot, we use the method of complex
analysis:
@ = Re[zy(2) + 1(2)] (1)

involves finding two analytic functions (z) and y(z) of the complex variable z = x + iy. These functions are
related to the stresses and displacements by these equations:
e stresses:

0.+ 0, =2[J/(2) + ¥/ (2)] = 4Rey/(2)
0, — 0y + 2ioy, = 2[2y"(2) + 1 (2)]
e displacement:

uy + i, = (1/20) [k (2) — 29/ (2) + 7 2)] (3)
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where £k = 3 — 4v in plane deformation

v .
k= — in plane stress

and v is the Poisson’s ratio. After, we take into account the boundary conditions, then we give the stress
vector (t,,1,) on the exterior outline 09, the functions y(z) and y(z) must satisfy the limit condition where
z € 02 and s is the curvilinear abscise:

e+ ity = —id[(2) + 2/ (2) + 2(2)]/ds )

The resolution of the general elasticity plane problem consist to find two analytic functions y/(z) and y(z)
satisfy the limit condition in order to determine the stress tensor around an elliptical slot. The limit con-
dition (4) can be changed, when z tend to the infinite, with giving this asymptotic development:

V@I HO0/2)
UG o s )

where I'g and I are the stresses connected to the infinite uniform stresses 67°, 67° and o7;. Then, with Eq. (2)
we obtain: )

(Dl s sz s o »
I= (0% = o¥)e /2 = (o = o) /2 + o

where ¢{° and ¢5° are the principles stresses at infinite and f is the first principle direction angle at infinite
with the abscises axe (Ox). Finally, in presence of defect ¢ supposed free (¢ +i¢, = 0) the condition (4)
becomes:

W(z) + 2/ (z) + %(z) = constant where z € ¢ (7)

The two analytic functions ¥/(z) and y(z) must satisfy the two conditions (5) and (7). Then, we apply the
principle of superposition, and we treat the case of infinite plane with a closed defect where the major axis
makes an angle f with the direction of uniaxial load. In the first time, we suppose that the orientation of the
cartesian system where the origin is the centre of the ellipse, such us the axis (Ox) and (Oy) coincide with a
and b of the ellipse (Fig. 1). After, we introduce the elliptical co-ordinates (&, ) with these transformation
equations:

x = ccoshécosy (8)
y=csinh¢sing

where ¢ is equal the focal distance of the elliptic form (¢ = a*> — b*). The two Eq. (8) are equivalent to:

z=x+1y = ccosh{ = ccosh(¢ +in) 9)
and when we eliminate n in Eq. (8), we get:
2 2
x n Y -1 (10)

(c2cosh® &) (c2sinh? &)
If ¢ has the constant value, the corresponding curve in the (x, y) plane is the ellipse, where the half axes are
ccosh &, ¢sinh £ and the focus are at x = +¢. For different value of &, we obtain different ellipses who have
the similar focus, i.e. a family of ellipses like presented in Fig. 1. On one of these any ellipses, & is constant
and # vary on an interval of 2z. In other case, we eliminate ¢ between Eq. (8) using the relation:
cosh? & — sinh? & = 1, we get:
2 2

x y
_ =1 11
(c2cos’n)  (c2sin’p) (1)
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Similarly, the curves n equal constant are the hyperbolae (Eq. (11)). This equation present a family
of homofocal hyperbolae, on one of these any hyperbolae 7 is constant and ¢ vary. The whole of this co-
ordinate system is called the elliptic co-ordinate. Every point of the plane (xy) is characterised by the
defined value of ¢ and 7, these value strike the two defined curve by Egs. (10) and (11) to intercept at this
point. If we work in the new curvilinear co-ordinate system, the relation between the stresses and dis-
placements expression at the curvilinear and cartesian co-ordinates systems is given by these equations:

e stresses:

o+ 0y =0x+0, (12)
o, — 0¢ + 2oz, = e¥*(0, — 0, + 2i0,,)
o displacement:
s +iu, = e (u, + iu,) (13)

where € = sinh {/sinh {.

When we combine Egs. (2) and (3) with (10)—(13), the stress and displacement components borne by a
small element of volume can be expressed by these equation:
e stresses:

0+ 0, = 20/(@) + 7 (2)] = 4Rely/ ()] 14
oy — 0: + 2o, = 262y (2) + " (2))]
e displacement:
ue — iuy = (1/20) [k (z) — 29/ (2) + 7 (2)] (15)
Far from the notch, the principal stresses are ;° = ¢ and ¢5° = 0, then we have with Eqgs. (2), (5) and (6):
4Ry ()] = o | (16)
20'() + ()] = —oe
and on the defect defined by (& = &), the condition (7) become:
¥(z) + 29/ (2) + %(2) = constant (17)

where z € &.
All these limit conditions (16) and (17) can be satisfied when writing the complex functions ¥(z) and y(z)
in this form:

W(z) = (¢/4)(A4 cosh { + Bsinh{) "
{ 7(2) = (2/4)(C + Dcosh 2{ + E sinh 2{) (18)

The complex stress functions in the form put forward by Stevenson (1945) are written by Eq. (18) where 4,
B, C, D and E are constants whose values are fixed by adequately specified boundary conditions (Egs. (16)
and (17)). The complex functions in the general case (uniaxial and biaxial load) also given by Timoshenko
and Goodier (1961) and Jeager and Cook (1979) are written in this equation:

{ W (z) = (oc/4)[ne® ) cosh { + (m — ne*“0tP) sinh ()] (19)

7' (z) = —(oc/4sinh {)[mcosh 2&; — ncos 2 + ne* sinh 2({ — &, — ip)]

where m=1+kandn=1—k.
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For the uniaxial load, kK = 0 (Chang, 1981a,b), the complex functions (z) and y(z) are written:

{ Y (z) = (ac/4)[e*0 cos 2B cosh { + (1 — e*¢th) sinh (]
1(2) = ~(oc>/4)[(cosh 22, — cos 2B)C + (1/2)eX cosh 2({ — & — if)]

and we can writing the expressions of all constants 4, B, C, D and E with a simple identification between
Egs. (18) and (20):

A =¢e*cos2p

B =1 — Xtih)

C = —(cosh2&; — cos2f) (21)
D = —(1/2)e** cosh 2(&, + ip)

E = (1/2)e***sinh 2(&, + ip)

(20)

where cosh 2({ — &, — if) = cosh 2(& + if) cosh 2{ + sinh 2(¢, + if3) sinh 2(.
With Griffith theory developed in 1924 (Griffith, 1924), for a defect having an elliptic form and the half
axes a and b, the stresses oy, g, and o,, are written with principles stresses ¢; and ¢, at infinity:

o, = oy sin’ f 4 o, cos?
g, = 0,08’  + oy sin” B (22)
Oxy = —1/2(0’1 — 0'2) sin Zﬁ

and the characteristic of the elliptic defect are equal to: @ = ccosh &, and b = c¢sinh &,. Then, for a closed
defect submitted to the uniaxial compression, we are interesting to the stress o, given by Eq. (22). When the
defect has closed, further displacement can be achieved only by sliding across the closed surface, and this
will be resisted by sliding friction across this surface. McClintock and Walsh (1962) first modified the
Griffith theory to take this effect into account, and the theory was developed further by Brace (1960),
Murrell (1964) and Bombolakis (1973). McClintock and Walsh (1962) assume that a normal stress o, at
infinity is necessary to close the defect. Then, they assume that a normal stress across the surface of the
closed defect (Eq. (23)) and that a frictional force (Eq. (24)) resists sliding across this surface.

0, = 0y — O (23)
5 = po, (24)
then the stress o,, and the tangential stress o in the crack surface are given respectively by these equations:
Oy + 0, =04+ p(o, — o) (25)
o = 2800 — 2’72)::—;2/3(% — 0c)] (26)

where p is a friction coefficient and when we using Eq. (22), Eq. (26) becomes:

26000 + 7’/6*
G[ = 272
S+n
where

0" = (01 — 02)[sin2f — pcos2f] — p(o1 + 02 — 20¢) (28)
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When we differentiating Eq. (27) with respect to 5, o; is found to have maximum or minimum values given
by this equation:

n/é = {—20’0:‘: (4054—0*2)1/2} /a* (29)
and when we inserting this value of n in Eq. (27), we obtain the extreme values o, of ay:
0e = [20c & (452 + 6)'7] [2¢, (30)

In Eq. (28), the negative sign is to be taken, since we are interested in tensile values. The maximum value of
. as a function of f occurs when do*/df = 0.

Finally, using Egs. (14), (15), (23)-(26) and differentiating Eq. (20) with respect to z, we can suggest the
expression of the stress tensor for an oblique closed defect with sliding.

4. Stress field

Every specimen (PMMA plate) with a slot, whose axis makes an angle f with the direction of imposed
uniaxial compressive stress g, may be compared to an infinite plate with an elliptical cavity where the long
axis is equal to the slot length. Using the system of curvilinear co-ordinates defined by two families of
ellipses ¢ and homofocal hyperbolas 7 having the same focus as the ellipse &, representative of the slot, we
can writing the repartition of the stresses in the specimen. The border of the slot is generally smooth, the
branch crack has more chance to start at the point where the stress o,,(¢ = &) reach his maximum value.
The principal stresses o1, 6> and the plane equivalent stress o.q are calculated respectively as Eq. (31)—(33):

— 2 2 11/2
o1 = (0: +0y)/2 = {[(0¢ = 0,)/2]" + 0, (31)
_ 2, 2412
oy = (0c + 0y)/2+ {[(0c — 0,) /2" + 0, (32)
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Fig. 2. Stress field around a closed defect (b/a = 0) inclined at # = 45° with a friction coefficient p = 0.18. Isovalues of principal stress
o) normalised by the applied stress a.
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Oeq = {3(‘7517)2 + [(Gnn)z + (055)2 - Jnnoié]/z}l/z (33)

For the defect angle f = 45° and the friction coefficient p = 0.18, we have plotted in the first time the
isovalues of the principal stresses o, (Fig. 2), in the second time the isovalues of ¢, with the corresponding
stress trajectories of ¢, passing through the point of maximum tensile stress o, at the slot edge (Fig. 3), after
the isovalues of the plane equivalent stress g¢q (Fig. 4) and finally the stress trajectories of ¢, and o, (Fig. 5).
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Fig. 3. Isostress values of a,/0 for § = 45°, with superimposition of the stress trajectory of o, touching the point of maximum tensile
stress o, for a closed defect (b/a = 0) and with a friction coefficient p = 0.18.
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Fig. 4. Stress field around a closed defect (b/a = 0) inclined at § = 45° with a friction coefficient p = 0.18. Isovalues of principal stress
0eq normalised by the applied stress a.
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Fig. 5. Stress trajectories of ¢; and o, for a closed defect (b/a = 0) inclined at § = 45° with a friction coefficient p = 0.18.

5. Conclusions

In the first time, we observe that | is a compressive stress nearly everywhere around the closed defect
(dotted lines in Figs. 2 and 3). Whereas g, is a strong tensile stress (heavy lines Fig. 3) in a large area around
the slot and is thus the stress which opens the branch crack. Finally, the branch crack will be initiated at the
point where the tensile stress ¢, reaches its maximum value and will propagate along the stress trajectory of
the principal stress o passing at the same point.
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