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Abstract

We study the stress field around an oblique closed defect in polymethylmethacrylate (PMMA) plates under uniaxial

compression in the presence of friction. Every specimen (PMMA plate) with a slot may be compared to an infinite plate

with an elliptical cavity where the long axis is equal to the slot length. We have calculated the stress tensor for an

elliptical oblique closed slot using the system of curvilinear co-ordinates defined by two families of ellipses and homo-

focal hyperbolas and we have plotted the isovalues and the stress trajectories in terms of the friction intensity.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An increasing number of geological observations have shown that some kinds of fault on different scales

originate from shearing movements along pre-existing joints. Branch cracks have been observed in various

materials such as polymers (Bowden, 1970; Poirier, 1980; Brun and Cobbold, 1980), plaster (Lajtai, 1971)

and glass (Bombolakis, 1964, 1968). The branch crack also occurs in rocks such as granite (Ashby and

Sammis, 1988) and at the tip of geological faults.

The aim of this paper is to study the stress field linked to the defect, in a polymethylmethacrylate

(PMMA) plate with a slot, whose axis makes an angle b ranging from 15� to 75� with the direction of
imposed uniaxial compressive stress. Very thin plates of different materials were inserted within the slot to

ensure a known friction coefficient and in order to have an oblique closed slot (Chaker and Barquins, 1996;

Barquins et al., 1997). Under uniaxial compression, the relative displacement of initial surface defect

corresponds to mode II.

2. Mathematical problem

To study the mathematical models, the PMMA plate may be compared to an infinite plate with an

elliptical cavity where the long axis is equal to the slot length (Inglis, 1913; Westergaard, 1939; Irwin, 1957;
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Sneddon, 1964). The stress tensor for an elliptical oblique closed slot can be calculated using the system of

curvilinear co-ordinates defined by two families of ellipses and homofocal hyperbolas (Fig. 1). For an open

slot, the stress tensor was found by Wu and Chang (1978). A very powerful method for solving plane

problems was developed first by Stevenson (1945), over by Muskhelishvili (1953), after by Timoshenko and
Goodier (1961) and Jeager and Cook (1979).

3. Stress tensor

In order to calculate the stress tensor for an elliptical oblique closed slot, we use the method of complex

analysis:

U ¼ Re½�zzwðzÞ þ vðzÞ� ð1Þ

involves finding two analytic functions wðzÞ and vðzÞ of the complex variable z ¼ xþ iy. These functions are
related to the stresses and displacements by these equations:

• stresses:

rx þ ry ¼ 2½w0ðzÞ þ �ww0ð�zzÞ� ¼ 4Rew0ðzÞ
ry � rx þ 2irxy ¼ 2½�zzw00ðzÞ þ v00ðzÞ�

(
ð2Þ

• displacement:

ux þ iuy ¼ ð1=2lÞ½kwðzÞ � z �ww0ð�zzÞ þ �vv0ð�zzÞ� ð3Þ

Fig. 1. State of stress near an elliptical crack tip in curvilinear co-ordinates.
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where k ¼ 3� 4m in plane deformation

k ¼ 3� m
1� m

in plane stress

and m is the Poisson�s ratio. After, we take into account the boundary conditions, then we give the stress

vector ðtx; tyÞ on the exterior outline @X, the functions wðzÞ and vðzÞ must satisfy the limit condition where

z 2 @X and s is the curvilinear abscise:

tx þ ity ¼ �id½wðzÞ þ z �ww0ð�zzÞ þ �vvð�zzÞ�=ds ð4Þ
The resolution of the general elasticity plane problem consist to find two analytic functions wðzÞ and vðzÞ
satisfy the limit condition in order to determine the stress tensor around an elliptical slot. The limit con-

dition (4) can be changed, when z tend to the infinite, with giving this asymptotic development:

w0ðzÞ 
 C0 þOð1=z2Þ
v0ðzÞ 
 C þOð1=z2Þ

�
jzj ! þ1 ð5Þ

where C0 and C are the stresses connected to the infinite uniform stresses r1
x , r

1
y and r1

xy . Then, with Eq. (2)

we obtain:

C0 ¼ ðr1
1 þ r1

2 Þ=4 ¼ ðr1
x þ r1

y Þ=4
C ¼ ðr1

2 � r1
1 Þe�2ib=2 ¼ ðr1

y � r1
x Þ=2þ irxy

�
ð6Þ

where r1
1 and r1

2 are the principles stresses at infinite and b is the first principle direction angle at infinite

with the abscises axe (Ox). Finally, in presence of defect n supposed free ðtx þ ity ¼ 0Þ the condition (4)

becomes:

wðzÞ þ z �ww0ð�zzÞ þ �vvð�zzÞ ¼ constant where z 2 n ð7Þ
The two analytic functions wðzÞ and vðzÞ must satisfy the two conditions (5) and (7). Then, we apply the

principle of superposition, and we treat the case of infinite plane with a closed defect where the major axis

makes an angle b with the direction of uniaxial load. In the first time, we suppose that the orientation of the

cartesian system where the origin is the centre of the ellipse, such us the axis (Ox) and (Oy) coincide with a
and b of the ellipse (Fig. 1). After, we introduce the elliptical co-ordinates ðn; gÞ with these transformation

equations:

x ¼ c cosh n cos g
y ¼ c sinh n sin g

�
ð8Þ

where c is equal the focal distance of the elliptic form ðc2 ¼ a2 � b2Þ. The two Eq. (8) are equivalent to:

z ¼ xþ iy ¼ c cosh f ¼ c coshðn þ igÞ ð9Þ
and when we eliminate g in Eq. (8), we get:

x2

ðc2 cosh2 nÞ
þ y2

ðc2 sinh2 nÞ
¼ 1 ð10Þ

If n has the constant value, the corresponding curve in the ðx; yÞ plane is the ellipse, where the half axes are
c cosh n, c sinh n and the focus are at x ¼ �c. For different value of n, we obtain different ellipses who have

the similar focus, i.e. a family of ellipses like presented in Fig. 1. On one of these any ellipses, n is constant

and g vary on an interval of 2p. In other case, we eliminate n between Eq. (8) using the relation:

cosh2 n � sinh2 n ¼ 1, we get:

x2

ðc2 cos2 gÞ �
y2

ðc2 sin2 gÞ
¼ 1 ð11Þ
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Similarly, the curves g equal constant are the hyperbolae (Eq. (11)). This equation present a family

of homofocal hyperbolae, on one of these any hyperbolae g is constant and n vary. The whole of this co-

ordinate system is called the elliptic co-ordinate. Every point of the plane ðxyÞ is characterised by the

defined value of n and g, these value strike the two defined curve by Eqs. (10) and (11) to intercept at this
point. If we work in the new curvilinear co-ordinate system, the relation between the stresses and dis-

placements expression at the curvilinear and cartesian co-ordinates systems is given by these equations:

• stresses:

rn þ rg ¼ rx þ ry

rg � rn þ 2irng ¼ e2iaðry � rx þ 2irxyÞ

�
ð12Þ

• displacement:

un þ iug ¼ e�iaðux þ iuyÞ ð13Þ

where e2ia ¼ sinh f= sinh �ff.
When we combine Eqs. (2) and (3) with (10)–(13), the stress and displacement components borne by a

small element of volume can be expressed by these equation:

• stresses:

rn þ rg ¼ 2½w0ðzÞ þ �ww0ð�zzÞ� ¼ 4Re½w0ðzÞ�
rg � rn þ 2irng ¼ 2e2ia½�zzw0ðzÞ þ v00ðzÞ�

(
ð14Þ

• displacement:

un � iug ¼ ð1=2lÞ½kwðzÞ � z �ww0ð�zzÞ þ �vv0ð�zzÞ� ð15Þ

Far from the notch, the principal stresses are r1
1 ¼ r and r1

2 ¼ 0, then we have with Eqs. (2), (5) and (6):

4Re½w0ðzÞ� ¼ r
2½�zzw00ðzÞ þ v00ðzÞ� ¼ �re�2ib

�
ð16Þ

and on the defect defined by (n ¼ n0), the condition (7) become:

wðzÞ þ z �ww0ð�zzÞ þ �vvð�zzÞ ¼ constant ð17Þ

where z 2 n0.
All these limit conditions (16) and (17) can be satisfied when writing the complex functions wðzÞ and vðzÞ

in this form:

wðzÞ ¼ ðc=4ÞðA cosh f þ B sinh fÞ
vðzÞ ¼ ðc2=4ÞðCf þ D cosh 2f þ E sinh 2fÞ

�
ð18Þ

The complex stress functions in the form put forward by Stevenson (1945) are written by Eq. (18) where A,
B, C, D and E are constants whose values are fixed by adequately specified boundary conditions (Eqs. (16)

and (17)). The complex functions in the general case (uniaxial and biaxial load) also given by Timoshenko

and Goodier (1961) and Jeager and Cook (1979) are written in this equation:

wðzÞ ¼ ðrc=4Þ½ne2ðn0þibÞ cosh f þ ðm� ne2ðn0þibÞ sinh fÞ�
v0ðzÞ ¼ �ðrc=4 sinh fÞ½m cosh 2n0 � n cos 2b þ ne2n0 sinh 2ðf � n0 � ibÞ�

�
ð19Þ

where m ¼ 1þ k and n ¼ 1� k.
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For the uniaxial load, k ¼ 0 (Chang, 1981a,b), the complex functions wðzÞ and vðzÞ are written:

wðzÞ ¼ ðrc=4Þ½e2n0 cos 2b cosh f þ ð1� e2ðn0þibÞÞ sinh f�
vðzÞ ¼ �ðrc2=4Þ½ðcosh 2n0 � cos 2bÞf þ ð1=2Þe2n0 cosh 2ðf � n0 � ibÞ�

�
ð20Þ

and we can writing the expressions of all constants A, B, C, D and E with a simple identification between

Eqs. (18) and (20):

A ¼ e2n0 cos 2b

B ¼ 1� e2ðn0þibÞ

C ¼ �ðcosh 2n0 � cos 2bÞ

D ¼ �ð1=2Þe2n0 cosh 2ðn0 þ ibÞ

E ¼ ð1=2Þe2n0 sinh 2ðn0 þ ibÞ

ð21Þ

where cosh 2ðf � n0 � ibÞ ¼ cosh 2ðn0 þ ibÞ cosh 2f þ sinh 2ðn0 þ ibÞ sinh 2f.
With Griffith theory developed in 1924 (Griffith, 1924), for a defect having an elliptic form and the half

axes a and b, the stresses rx, ry and rxy are written with principles stresses r1 and r2 at infinity:

rx ¼ r1 sin
2 b þ r2 cos

2 b

ry ¼ r1 cos
2 b þ r2 sin

2 b

rxy ¼ �1=2ðr1 � r2Þ sin 2b

8><
>: ð22Þ

and the characteristic of the elliptic defect are equal to: a ¼ c cosh n0 and b ¼ c sinh n0. Then, for a closed

defect submitted to the uniaxial compression, we are interesting to the stress ry given by Eq. (22). When the

defect has closed, further displacement can be achieved only by sliding across the closed surface, and this

will be resisted by sliding friction across this surface. McClintock and Walsh (1962) first modified the

Griffith theory to take this effect into account, and the theory was developed further by Brace (1960),

Murrell (1964) and Bombolakis (1973). McClintock and Walsh (1962) assume that a normal stress rc at

infinity is necessary to close the defect. Then, they assume that a normal stress across the surface of the

closed defect (Eq. (23)) and that a frictional force (Eq. (24)) resists sliding across this surface.

rn ¼ ry � rc ð23Þ

rq ¼ qrn ð24Þ

then the stress rxy and the tangential stress rt in the crack surface are given respectively by these equations:

rxy þ rq ¼ rxy þ qðry � rcÞ ð25Þ

rt ¼
2n0rc � 2g½rxy þ qðry � rcÞ�

n2
0 þ g2

ð26Þ

where q is a friction coefficient and when we using Eq. (22), Eq. (26) becomes:

rt ¼
2n0rc þ gr�

n2
0 þ g2

ð27Þ

where

r� ¼ ðr1 � r2Þ½sin 2b � q cos 2b� � qðr1 þ r2 � 2rcÞ ð28Þ
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When we differentiating Eq. (27) with respect to g, rt is found to have maximum or minimum values given

by this equation:

g=n0 ¼
h
� 2rc � ð4r2

c þ r�2Þ1=2
i.

r� ð29Þ

and when we inserting this value of g in Eq. (27), we obtain the extreme values re of rt:

re ¼ 2rc

h
� ð4r2

c þ r�2Þ1=2
i.

2n0 ð30Þ

In Eq. (28), the negative sign is to be taken, since we are interested in tensile values. The maximum value of
re as a function of b occurs when dr�=db ¼ 0.

Finally, using Eqs. (14), (15), (23)–(26) and differentiating Eq. (20) with respect to z, we can suggest the

expression of the stress tensor for an oblique closed defect with sliding.

4. Stress field

Every specimen (PMMA plate) with a slot, whose axis makes an angle b with the direction of imposed
uniaxial compressive stress r, may be compared to an infinite plate with an elliptical cavity where the long

axis is equal to the slot length. Using the system of curvilinear co-ordinates defined by two families of

ellipses n and homofocal hyperbolas g having the same focus as the ellipse n0 representative of the slot, we

can writing the repartition of the stresses in the specimen. The border of the slot is generally smooth, the

branch crack has more chance to start at the point where the stress rggðn ¼ n0Þ reach his maximum value.

The principal stresses r1, r2 and the plane equivalent stress req are calculated respectively as Eq. (31)–(33):

r1 ¼ ðrn þ rgÞ=2� f½ðrn � rgÞ=2�2 þ r2
ngg

1=2 ð31Þ

r2 ¼ ðrn þ rgÞ=2þ f½ðrn � rgÞ=2�2 þ r2
ngg

1=2 ð32Þ

Fig. 2. Stress field around a closed defect ðb=a ¼ 0Þ inclined at b ¼ 45� with a friction coefficient q ¼ 0:18. Isovalues of principal stress

r1 normalised by the applied stress r.
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req ¼ f3ðrngÞ2 þ ½ðrggÞ2 þ ðrnnÞ2 � rggrnn�=2g1=2 ð33Þ

For the defect angle b ¼ 45� and the friction coefficient q ¼ 0:18, we have plotted in the first time the

isovalues of the principal stresses r1 (Fig. 2), in the second time the isovalues of r2 with the corresponding

stress trajectories of r1 passing through the point of maximum tensile stress r2 at the slot edge (Fig. 3), after
the isovalues of the plane equivalent stress req (Fig. 4) and finally the stress trajectories of r1 and r2 (Fig. 5).

Fig. 3. Isostress values of r2=r for b ¼ 45�, with superimposition of the stress trajectory of r1 touching the point of maximum tensile

stress r2, for a closed defect ðb=a ¼ 0Þ and with a friction coefficient q ¼ 0:18.

Fig. 4. Stress field around a closed defect ðb=a ¼ 0Þ inclined at b ¼ 45� with a friction coefficient q ¼ 0:18. Isovalues of principal stress

req normalised by the applied stress r.
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5. Conclusions

In the first time, we observe that r1 is a compressive stress nearly everywhere around the closed defect

(dotted lines in Figs. 2 and 3). Whereas r2 is a strong tensile stress (heavy lines Fig. 3) in a large area around
the slot and is thus the stress which opens the branch crack. Finally, the branch crack will be initiated at the

point where the tensile stress r2 reaches its maximum value and will propagate along the stress trajectory of

the principal stress r1 passing at the same point.
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